Quantum Information
and Quantum Computation

http://www.qubit.org/

Jonathan Jones
Jonathan.jones@qubit.org
Current approaches are essentially classical

which is wrong “…because Nature isn’t classical
dammit!” (Feynman)
Classical Information

• Classical information is made up of bits, which can be in either of two states, 0 and 1

• Bits can (in principle) be measured perfectly
• Bits can be measured without disturbance
• Bits can be copied without restriction
• Local manipulations cannot affect other distant bits
Qubits

- Bits can be mapped to the energy levels ("eigenstates") $|0\rangle$ and $|1\rangle$ of a two state quantum system (a qubit).
- If a qubit is confined to its eigenstates then it behaves just like a classical bit.
- But qubits are not confined to eigenstates: they can exist in superpositions of these states opening up entirely new forms of information processing!
Quantum Information

- Qubits can be in two different states at the same time
- Qubits cannot be measured perfectly
- Qubits cannot be measured without disturbance
- Qubits cannot be copied
- Local manipulations on one qubit can affect other distant qubits (the EPR “paradox”)
Quantum “technologies”

- Quantum Communication: quantum dense coding, quantum cryptography, quantum teleportation

- Quantum Computing: surpassing the classical limits

- Quantum Mechanics: insights into the foundations of quantum theory
Quantum Computing: Outline

- What’s wrong with classical computing?
- What could quantum computing offer?
- How can we build a quantum computer?
- What have we achieved so far?
- How far can we go?
Moore’s law

Every eighteen months computers double in speed (tenfold every five years!)

But faster computers must be smaller
The Semiconductor Roadmap

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DRAM half pitch</td>
<td>180</td>
<td>130</td>
<td>100</td>
<td>70</td>
</tr>
<tr>
<td>Accuracy</td>
<td>65</td>
<td>45</td>
<td>35</td>
<td>25</td>
</tr>
<tr>
<td>Gate length</td>
<td>140</td>
<td>85–90</td>
<td>65</td>
<td>45</td>
</tr>
<tr>
<td>Accuracy</td>
<td>14</td>
<td>9</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>Oxide layer</td>
<td>1.9–2.5</td>
<td>1.5–1.9</td>
<td>1.0–1.5</td>
<td>0.8–1.2</td>
</tr>
<tr>
<td>Junction depth</td>
<td>42–70</td>
<td>25–43</td>
<td>20–33</td>
<td>16–26</td>
</tr>
</tbody>
</table>

At some point in this decade current approaches to building computers will run into major problems.
The end of the road?

By 2012 (?) our current approach will run into major problems.
Computational complexity

Time needed

Input size (L)

\[\exp(L) \]

\[L^2 \]
Turing, Church, Feynman

- All reasonable models of computation are equivalent to Turing machines
- Computation is an abstract process whose limits are set by mathematics

- Computation is a real physical process: the limits to computation are set by physics
- Quantum and classical physics are different
Computation is physical!
Parallel universes

- When a quantum object can do two things it does both—in different universes
- Parallel universes can evolve separately and then be brought back together (interference)
- Makes quantum mechanics difficult and makes quantum information interesting!
Quantum complexity leads to

A quantum object splits up into many different parallel universes, each of which behaves differently.

Parallel universes recombine and interfere to produce the final result.

Look at it!
... quantum parallelism

Computer splits up into many different parallel universes, each of which does a computation.

Parallel universes recombine and interfere to produce one answer.

Look at final answer!
Qubits & quantum registers

<table>
<thead>
<tr>
<th>Classical Bit</th>
<th>Quantum Bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 or 1</td>
<td>0 or 1 or 01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Classical register</th>
<th>Quantum register</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>000 001 010 011 100 101 110 111</td>
</tr>
</tbody>
</table>
Quantum parallel processing

Quantum Processor

F(x)

Quantum logic gates

INPUT

OUTPUT
The science bit

http://people.ccmr.cornell.edu/~mermin/qcomp/CS483.html

Table I.

<table>
<thead>
<tr>
<th>CLASSICAL versus QUANTUM BITS</th>
<th>Cbits</th>
<th>Qbits</th>
</tr>
</thead>
<tbody>
<tr>
<td>States of n Bits</td>
<td>$</td>
<td>x\rangle_n$, $0 \leq x < 2^n$</td>
</tr>
<tr>
<td>Subsets of n Bits</td>
<td>Always have states</td>
<td>Generally have no states</td>
</tr>
<tr>
<td>Reversible operations on states</td>
<td>Permutations</td>
<td>Unitary transformations</td>
</tr>
<tr>
<td>Can state be learned from Bits?</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>To get information from Bits</td>
<td>Just look</td>
<td>Measure</td>
</tr>
<tr>
<td>Information acquired</td>
<td>x</td>
<td>x with probability $</td>
</tr>
<tr>
<td>State after information acquired</td>
<td>Same: still $</td>
<td>x\rangle$</td>
</tr>
</tbody>
</table>
Exponential growth

<table>
<thead>
<tr>
<th>Qubits</th>
<th>Universes (Calculations)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>8</td>
<td>256</td>
</tr>
<tr>
<td>16</td>
<td>65536</td>
</tr>
<tr>
<td>32</td>
<td>4294967296</td>
</tr>
<tr>
<td>64</td>
<td>18446744073709551616</td>
</tr>
<tr>
<td>128</td>
<td>340282366920938463463374607431768211456</td>
</tr>
<tr>
<td>256</td>
<td>1.16×10^{77}</td>
</tr>
<tr>
<td>512</td>
<td>1.34×10^{154}</td>
</tr>
</tbody>
</table>
Getting the answer out...

- Quantum computers could perform vast numbers of computations in parallel.
- But we can’t access all that power directly! At the end of the day we can only read out a single result.
- Quantum algorithms are all about extracting small pieces of useful information which are hard to compute in other ways.
Deutsch’s algorithm

- Suppose we have a coin which is either a real coin (with a head and a tail) or a trick coin (with two heads or two tails)
- To distinguish real and trick coins we would normally need to look at both sides separately and compare the two results
- Using quantum methods we can look at both sides in a single glance!
What could we do with one?

- Simulate quantum mechanics in complex systems: from astrophysics to zoology
- Factorise big numbers with Shor’s algorithm: the end of classical cryptography?
- Speed up searches: Grover’s algorithm
- Quantum computing is not the answer to everything
Computation is physical!
How might we build one?

- To build a quantum computer you need
- Quantum objects (to act as qubits),
- Interacting strongly with one another (to build logic gates),
- Isolated from the environment (stable), but
- Accessible from the outside world for input, output and control
- Small quantum computers (2–7 qubits) already exist!
Experiments

- Photons: communication
- Ion traps: early promise
- NMR: current leader
- Solid state: many blue skies proposals—the way of the future?
Ion experiments
NMR experiments
Solid state proposals

- Widely felt that any “real” quantum computer will be a solid state device
- Huge range of proposals involving quantum dots, SQUIDs, single spin NMR/ESR, etc.
- Some schemes have demonstrated single qubit devices; others are just paper proposals
- All extremely speculative, but we should have a better idea in 5-10 years time
Scaling systems up

- NMR is fine for small demonstration systems, but hard to scale up beyond 10-20 qubits
- Limits of ion traps are similar but less clear
- Estimates suggest that quantum computers with about 300-1000 qubits could outstrip classical designs
- Error correction schemes seem to impose an overhead of 10-100, raising the size to 3000+
- We need better technologies
Summary

• Quantum mechanics provides a new way of looking at information (technologies)
• Classical computation runs out quite soon, but quantum computation might allow us to go beyond current limits
• NMR provides a fine technology for building small quantum computers, but we will need new approaches to build quantum computers large enough to be really interesting