Timing Is Everything

Joél Ouaknine

Department of Computer Science
Oxford University

BCS Meeting, Oxford

17 May 2012

Automated Verification

- e
theory practice

“In theory, there is no difference between theory and
practice. In practice, there is.”

Jan L.A. van de Snepscheut

Ariane 5 Explosion, French Guyana, 1996

NASA Mars Missions, 1997-2004

e 1997: Mars Rover loses contact
e 1999: Mars Climate Orbiter is lost
e 1999: Mars Polar Lander is lost

e 2004: Mars Rover freezes

Intel Pentium FDIV Bug, 1994

Pentium FDIV Error

133384 5

xfy

1.33368

"5 R

Northeast Blackout, 2003

Wednesday, August 13 : ot Thursday, August 14

Chrysler Pacifica SUV, 2006

December 2006: DaimlerChrysler recalls 128,000 Pacifica
sports utility vehicles because of a problem with the software
governing the fuel pump and power train control. The defect
could cause the engine to stall unexpectedly. [Washington Post]

Automated Verification

“A Grand Challenge for computing research.”

Sir Tony Hoare, 2003

Automated Verification

“A Grand Challenge for computing research.”

Sir Tony Hoare, 2003

Now one of a small handful of areas ‘targetted for growth’ by
UK funding council EPSRC.

Automated Verification

“Nobody is going to run into a friend’s office with a
program verification. Nobody is going to sketch a

verification out on a paper napkin. .. One can feel
one’s eyes glaze over at the very thought.”

Rich de Millo, Richard Lipton, Alan Perlis, 1979

Automated Verification

“Nobody is going to run into a friend’s office with a
program verification. Nobody is going to sketch a

verification out on a paper napkin. .. One can feel
one’s eyes glaze over at the very thought.”

Rich de Millo, Richard Lipton, Alan Perlis, 1979

“The success of program verification as a generally
applicable and completely reliable method for
guaranteeing program performance is not even a
theoretical possibility.”

James H. Fetzer
Program Verification: The Very Idea, CACM 31(9), 1988

Automated Verification: A High-Level Overview

Properties:
, A0 1.
Modelling Specification

M (Verification)-—— g > 'Y
-—O

Ic && d)

G(
\ G(
/ . \ [performance indices|

lsystem ok| [parameter values]

TERMINATOR
?rooe ool s -For Fecmmation amd liveness

TERMINATOR vs. The Ackermann Function

int Ack(int m, int n) {
if (m== 0)
return n + 1;
else if (n == 0)
return Ack(m— 1, 1);
else

return Ack(m — 1, Ack(m, n — 1));

TERMINATOR vs. The Ackermann Function

int Ack(int m, int n) {
if (m== 0)
return n + 1;
else if (n == 0)
return Ack(m - 1, 1);
else
return Ack(m — 1, Ack(m, n — 1));

2 2

Ack(n,n): 1, 3, 7, 61, 22 _—3 2¥ _3
——
Ack(5,4)+3

Timing Is Everything

A Login Protocol

A Login Protocol

login_name
START X=0 VALIDATE

A Login Protocol

login_name
START X=0 VALIDATE
f restart

X=607?

A Login Protocol

login_name pw_correct
START X=0 VALIDATE X<607
f restart

X=607?

A Login Protocol

- login_name pw_correct
START X=0 VALIDATE <607
f restart

X=607?

x<607? | pw_wrong

Y

LOG_ERROR

A Login Protocol

- login_name pw_correct
START X=0 VALIDATE <607
f restart

X=607?

x<607? | pw_wrong

Y

/
DELAY |- P2 1 oG ERROR

A Login Protocol

login_name pw_correct
START X=0 VALIDATE <607
1 f restart

X=607?

x>107?| restart x<607? | pw_wrong

Y

|
DELAY |= P2 1 0G_ERROR

BMW Hydrogen 7

BMW Hydrogen 7

T
LT
LT
L1 L

BMW Hydrogen 7

D(PEDAL — ¢ BRAKE)

BMW Hydrogen 7

D(PEDAL — ¢ BRAKE)

D(PEDAL — 0[25740] BRAKE)

Timed Automata

Introduced by Rajeev Alur at Stanford during his PhD under
David Dill:

» Rajeev Alur, David L. Dill: Automata For Modeling
Real-Time Systems. ICALP 1990: 322-335

» Rajeev Alur, David L. Dill: A Theory of Timed Automata.
TCS 126(2): 183-235, 1994

Timed Automata

login_name pw_correct
START X=0 VALIDATE <607
1 f restart

X=607?

x>107?| restart x<607? | pw_wrong

Y

/
DELAY |= P2 {1 0G_ERROR

Timed Automata

Time is modelled as the non-negative reals, R>g.

Timed Automata

Time is modelled as the non-negative reals, R>g.

Theorem (Alur, Courcourbetis, Dill 1990)
Reachability is decidable (in fact PSPACE-complete).

Timed Automata

Time is modelled as the non-negative reals, R>g.

Theorem (Alur, Courcourbetis, Dill 1990)
Reachability is decidable (in fact PSPACE-complete).

Unfortunately:

Theorem (Alur & Dill 1990)
Language inclusion is undecidable for timed automata.

Temporal Logic Model Checking

“The paradigmatic idea of
the automata-theoretic
approach to verification is
that we can compile
high-level logical
specifications into an
equivalent low-level
finite-state formalism.”

Moshe Vardi

Temporal Logic Model Checking

“The paradigmatic idea of
the automata-theoretic
approach to verification is
that we can compile
high-level logical
specifications into an
equivalent low-level
finite-state formalism.”

Moshe Vardi

Theorem
Automata are closed under all Boolean operations. Moreover,

the language inclusion problem [L(A) C L(B) ?] is decidable.

An Uncomplementable Timed Automaton

a a a

A @ = @ = @

An Uncomplementable Timed Automaton

a a a

A @ = @ = @

An Uncomplementable Timed Automaton

a a a

A @ = @ = @

An Uncomplementable Timed Automaton

o T30
LA oo e
L(A): S

An Uncomplementable Timed Automaton

A — ; x:=0 v x=17? EQE
LA): v — N
- S S -
L(A): e [

A cannot be complemented:
There is no timed automaton B with L(B) = L(A).

Metric Temporal Logic

0O(a — 9,11 b)

Metric Temporal Logic

0O(a — 9,11 b)

Metric Temporal Logic

0O(a — 9,11 b)

=
p—
[S)

Does the timed word satisfy the specification?

Metric Temporal Logic

0O(a — 9,11 b)

Does the timed word satisfy the specification?

Metric Temporal Logic

Does the timed word satisfy the specification?

Metric Temporal Logic

=
>

p—

[S)

Does the timed word satisfy the specification?

Metric Temporal Logic

=
>

p—

[S)

Does the timed word satisfy the specification?

Metric Temporal Logic

=

>
-
[S)

Does the timed word satisfy the specification?

Metric Temporal Logic

=
p—

>
[S)

Does the timed word satisfy the specification?

Metric Temporal Logic

=
p—

>
[S)

Does the timed word satisfy the specification?

Metric Temporal Logic

0O(a — 9,11 b)

=

p—

[S)
>

w

Does the timed word satisfy the specification?

Metric Temporal Logic

0O(a — 9,11 b)

=
p—
[S)

Does the timed word satisfy the specification? Yes.

Real-Time Model Checking

Given a timed automaton A and a Metric Temporal Logic
specification ¢, does every timed word of A satisfy ¢?

Real-Time Model Checking

Given a timed automaton A and a Metric Temporal Logic
specification ¢, does every timed word of A satisfy ¢?

» For about 15 years (~ 1990-2005), the real-time
model-checking problem was widely claimed in the
literature to be undecidable.

Real-Time Model Checking

Given a timed automaton A and a Metric Temporal Logic
specification ¢, does every timed word of A satisfy ¢?

» For about 15 years (~ 1990-2005), the real-time
model-checking problem was widely claimed in the
literature to be undecidable.

» In 2005, James Worrell and | showed decidability through
the development of the theory of timed alternating
automata.

D(a — O—q b)

_1b)

O(a— ¢

BOREC
&=
b x<1?b
a b a b b b
03 05 0.8 1.31.4 1.8

BOREC
&=

b x<1?b
a b a b b b
03 05 0.8 1.31.4 1.8
N 7

a b
03 0.5
0.2,b

Real-Time Model Checking:
A High-Level Algorithm

Real-time model checking problem I

Real-Time Model Checking:
A High-Level Algorithm

Real-time model checking problem I

4

Alternating timed automaton emptiness problem I

Real-Time Model Checking:
A High-Level Algorithm

Real-time model checking problem I

4

Alternating timed automaton emptiness problem I

4

Halting problem for Turing machine with insertion errors.

Higman’s Lemma
Theorem
The subword order over a finite alphabet is a well-quasi order.

(Graham Higman, Ordering by Divisibility in Abstract Algebras,
Proceedings of the London Mathematical Society, vol. 2, 1952.)

Higman’s Lemma

Theorem
The subword order over a finite alphabet is a well-quasi order.

(Graham Higman, Ordering by Divisibility in Abstract Algebras,
Proceedings of the London Mathematical Society, vol. 2, 1952.)

“HIGMAN” is a subword of “HIGHMOUNTAIN".

Higman’s Lemma

Theorem
The subword order over a finite alphabet is a well-quasi order.

(Graham Higman, Ordering by Divisibility in Abstract Algebras,
Proceedings of the London Mathematical Society, vol. 2, 1952.)

“HIGMAN” is a subword of “HIGHMOUNTAIN".

Higman’s Lemma
Theorem
The subword order over a finite alphabet is a well-quasi order.

(Graham Higman, Ordering by Divisibility in Abstract Algebras,
Proceedings of the London Mathematical Society, vol. 2, 1952.)

“HIGMAN” is a subword of “HIGHMOUNTAIN".

Any infinite sequence of words Wy, Ws, W, ... must eventually
have two words, W; and W, , such that the first is a subword
of the second.

Higman’s Lemma

Theorem
The subword order over a finite alphabet is a well-quasi order.

(Graham Higman, Ordering by Divisibility in Abstract Algebras,
Proceedings of the London Mathematical Society, vol. 2, 1952.)

“HIGMAN” is a subword of “HIGHMOUNTAIN".

Any infinite sequence of words Wy, Ws, W, ... must eventually
have two words, W; and W, , such that the first is a subword
of the second.

» aba

Higman’s Lemma

Theorem
The subword order over a finite alphabet is a well-quasi order.

(Graham Higman, Ordering by Divisibility in Abstract Algebras,
Proceedings of the London Mathematical Society, vol. 2, 1952.)

“HIGMAN” is a subword of “HIGHMOUNTAIN".

Any infinite sequence of words Wy, Ws, W, ... must eventually
have two words, W; and W, , such that the first is a subword
of the second.

» aba, abbb

Higman’s Lemma

Theorem
The subword order over a finite alphabet is a well-quasi order.

(Graham Higman, Ordering by Divisibility in Abstract Algebras,
Proceedings of the London Mathematical Society, vol. 2, 1952.)

“HIGMAN” is a subword of “HIGHMOUNTAIN".

Any infinite sequence of words Wy, Ws, W, ... must eventually
have two words, W; and W, , such that the first is a subword
of the second.

» aba, abbb, baab

Higman’s Lemma

Theorem
The subword order over a finite alphabet is a well-quasi order.

(Graham Higman, Ordering by Divisibility in Abstract Algebras,
Proceedings of the London Mathematical Society, vol. 2, 1952.)

“HIGMAN” is a subword of “HIGHMOUNTAIN".

Any infinite sequence of words Wy, Ws, W, ... must eventually
have two words, W; and W, , such that the first is a subword
of the second.

» aba, abbb, baab, aa

Higman’s Lemma

Theorem
The subword order over a finite alphabet is a well-quasi order.

(Graham Higman, Ordering by Divisibility in Abstract Algebras,
Proceedings of the London Mathematical Society, vol. 2, 1952.)

“HIGMAN” is a subword of “HIGHMOUNTAIN".

Any infinite sequence of words Wy, Ws, W, ... must eventually
have two words, W; and W, , such that the first is a subword
of the second.

» aba, abbb, baab, aa, ba

Higman’s Lemma

Theorem
The subword order over a finite alphabet is a well-quasi order.

(Graham Higman, Ordering by Divisibility in Abstract Algebras,
Proceedings of the London Mathematical Society, vol. 2, 1952.)

“HIGMAN” is a subword of “HIGHMOUNTAIN".

Any infinite sequence of words Wy, Ws, W, ... must eventually
have two words, W; and W, , such that the first is a subword
of the second.

» aba, abbb, baab, aa, ba, bbb

Higman’s Lemma

Theorem
The subword order over a finite alphabet is a well-quasi order.

(Graham Higman, Ordering by Divisibility in Abstract Algebras,
Proceedings of the London Mathematical Society, vol. 2, 1952.)

“HIGMAN” is a subword of “HIGHMOUNTAIN".

Any infinite sequence of words Wy, Ws, W, ... must eventually
have two words, W; and W, , such that the first is a subword
of the second.

» aba, abbb, baab, aa, ba, bbb, abb

Higman’s Lemma

Theorem
The subword order over a finite alphabet is a well-quasi order.

(Graham Higman, Ordering by Divisibility in Abstract Algebras,
Proceedings of the London Mathematical Society, vol. 2, 1952.)

“HIGMAN” is a subword of “HIGHMOUNTAIN".

Any infinite sequence of words Wy, Ws, W, ... must eventually
have two words, W; and W, , such that the first is a subword
of the second.

» aba, abbb, baab, aa, ba, bbb, abb, ab

Higman’s Lemma

Theorem
The subword order over a finite alphabet is a well-quasi order.

(Graham Higman, Ordering by Divisibility in Abstract Algebras,
Proceedings of the London Mathematical Society, vol. 2, 1952.)

“HIGMAN” is a subword of “HIGHMOUNTAIN".

Any infinite sequence of words Wy, Ws, W, ... must eventually
have two words, W; and W, , such that the first is a subword
of the second.

» aba, abbb, baab, aa, ba, bbb, abb, ab, a

Higman’s Lemma

Theorem
The subword order over a finite alphabet is a well-quasi order.

(Graham Higman, Ordering by Divisibility in Abstract Algebras,
Proceedings of the London Mathematical Society, vol. 2, 1952.)

“HIGMAN” is a subword of “HIGHMOUNTAIN".

Any infinite sequence of words Wy, Ws, W, ... must eventually
have two words, W; and W, , such that the first is a subword
of the second.

» aba, abbb, baab, aa, ba, bbb, abb, ab, a, bb

Higman’s Lemma

Theorem
The subword order over a finite alphabet is a well-quasi order.

(Graham Higman, Ordering by Divisibility in Abstract Algebras,
Proceedings of the London Mathematical Society, vol. 2, 1952.)

“HIGMAN” is a subword of “HIGHMOUNTAIN".

Any infinite sequence of words Wy, Ws, W, ... must eventually
have two words, W; and W, , such that the first is a subword
of the second.

» aba, abbb, baab, aa, ba, bbb, abb, ab, a, bb, b

The Halting Problem for Faulty Turing Machines

(qO ’ <>)

The Halting Problem for Faulty Turing Machines

e

(qO ’ <>)

The Halting Problem for Faulty Turing Machines

-

(qO ’ <>)

The Halting Problem for Faulty Turing Machines

(qO ’ <>)

The Halting Problem for Faulty Turing Machines

(qO ’ <>) 77777777777 = (qs W)

The Halting Problem for Faulty Turing Machines

(g, W)

(G, <>) = --------- - (@ W)"/

The Halting Problem for Faulty Turing Machines

The Halting Problem for Faulty Turing Machines

35\}‘9\”» A\
//' T g W)
@, <) = W)
N

The Halting Problem for Faulty Turing Machines

35\}‘9\”» A\
//' T g W)
@, <) = W)
N

The Halting Problem for Faulty Turing Machines

Real-Time Model Checking

Theorem
The real-time model-checking problem for Metric Temporal
Logic is decidable (under the pointwise semantics).

Real-Time Model Checking

Theorem

The real-time model-checking problem for Metric Temporal
Logic is decidable (under the pointwise semantics).

The complexity is provably non-primitive recursive. In particular,
it grows faster than Ackermann’s function in the worst case.

From Timed Alternating Automata to
Efficient Runtime Monitoring Algorithms

D(PEDAL — 0[25740] BRAKE)

Quantitative Verification:
From Model Checking to Model Measuring

A

quantitative
systems

qualitative
systems

2O > NZ &L OO
R S . B
NN PN & N F

%
C
%

ﬁfj;
%

Quantitative Verification:
From Model Checking to Model Measuring

A

quantitative
systems

qualitative
systems

2O > NZ &L OO
R S . B
NN PN & N &F

%
C
%

ﬁfj;
%

Quantitative Verification:
From Model Checking to Model Measuring

quantitative
systems

qualitative
systems

Quantitative Verification:
From Model Checking to Model Measuring

quantitative
systems

qualitative
systems

