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Automated Verification

theory practice

“In theory, there is no difference between theory and
practice. In practice, there is.”

Jan L.A. van de Snepscheut



Ariane 5 Explosion, French Guyana, 1996



NASA Mars Missions, 1997–2004

• 1997: Mars Rover loses contact
• 1999: Mars Climate Orbiter is lost
• 1999: Mars Polar Lander is lost
• 2004: Mars Rover freezes



Intel Pentium FDIV Bug, 1994



Northeast Blackout, 2003



Chrysler Pacifica SUV, 2006

December 2006: DaimlerChrysler recalls 128,000 Pacifica
sports utility vehicles because of a problem with the software
governing the fuel pump and power train control. The defect
could cause the engine to stall unexpectedly. [Washington Post]
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Automated Verification

“Nobody is going to run into a friend’s office with a
program verification. Nobody is going to sketch a
verification out on a paper napkin. . . One can feel
one’s eyes glaze over at the very thought.”

Rich de Millo, Richard Lipton, Alan Perlis, 1979

“The success of program verification as a generally
applicable and completely reliable method for
guaranteeing program performance is not even a
theoretical possibility.”

James H. Fetzer
Program Verification: The Very Idea, CACM 31(9), 1988
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Automated Verification: A High-Level Overview

G(a ==> Fb)

G(!c && d)

. . .

Modelling Specification

2.

Properties:

1.

Verification

system ok

bug found

parameter values

performance indices





TERMINATOR vs. The Ackermann Function

i n t Ack ( i n t m, i n t n ) {
i f (m == 0)

return n + 1;
else i f ( n == 0)

return Ack (m − 1 , 1 ) ;
else

return Ack (m − 1 , Ack (m, n − 1 ) ) ;
}

Ack(n, n) : 1, 3, 7, 61, 2222222

− 3, 222··
·2︸ ︷︷ ︸

Ack(5,4)+3

− 3
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Timed Automata

Introduced by Rajeev Alur at Stanford during his PhD under
David Dill:

I Rajeev Alur, David L. Dill: Automata For Modeling
Real-Time Systems. ICALP 1990: 322-335

I Rajeev Alur, David L. Dill: A Theory of Timed Automata.
TCS 126(2): 183-235, 1994



Timed Automata
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Timed Automata

Time is modelled as the non-negative reals, R≥0.

Theorem (Alur, Courcourbetis, Dill 1990)
Reachability is decidable (in fact PSPACE-complete).

Unfortunately:

Theorem (Alur & Dill 1990)
Language inclusion is undecidable for timed automata.
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Temporal Logic Model Checking

“The paradigmatic idea of
the automata-theoretic
approach to verification is
that we can compile
high-level logical
specifications into an
equivalent low-level
finite-state formalism.”

Moshe Vardi

Theorem
Automata are closed under all Boolean operations. Moreover,
the language inclusion problem [ L(A) ⊆ L(B) ?] is decidable.
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An Uncomplementable Timed Automaton

A : //ONMLHIJK
@GF ECD
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Real-Time Model Checking

Given a timed automaton A and a Metric Temporal Logic
specification ϕ, does every timed word of A satisfy ϕ?

I For about 15 years (∼ 1990–2005), the real-time
model-checking problem was widely claimed in the
literature to be undecidable.

I In 2005, James Worrell and I showed decidability through
the development of the theory of timed alternating
automata.
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