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Automated Verification

- e
theory practice

“In theory, there is no difference between theory and
practice. In practice, there is.”

Jan L.A. van de Snepscheut



Ariane 5 Explosion, French Guyana, 1996




NASA Mars Missions, 1997-2004

e 1997: Mars Rover loses contact
e 1999: Mars Climate Orbiter is lost
e 1999: Mars Polar Lander is lost

e 2004: Mars Rover freezes



Intel Pentium FDIV Bug, 1994
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Northeast Blackout, 2003
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Chrysler Pacifica SUV, 2006

December 2006: DaimlerChrysler recalls 128,000 Pacifica
sports utility vehicles because of a problem with the software
governing the fuel pump and power train control. The defect
could cause the engine to stall unexpectedly. [Washington Post]
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Automated Verification

“A Grand Challenge for computing research.”

Sir Tony Hoare, 2003

Now one of a small handful of areas ‘targetted for growth’ by
UK funding council EPSRC.
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“Nobody is going to run into a friend’s office with a
program verification. Nobody is going to sketch a
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Rich de Millo, Richard Lipton, Alan Perlis, 1979



Automated Verification

“Nobody is going to run into a friend’s office with a
program verification. Nobody is going to sketch a

verification out on a paper napkin. .. One can feel
one’s eyes glaze over at the very thought.”

Rich de Millo, Richard Lipton, Alan Perlis, 1979

“The success of program verification as a generally
applicable and completely reliable method for
guaranteeing program performance is not even a
theoretical possibility.”

James H. Fetzer
Program Verification: The Very Idea, CACM 31(9), 1988



Automated Verification: A High-Level Overview
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TERMINATOR vs. The Ackermann Function

int Ack(int m, int n) {
if (m== 0)
return n + 1;
else if (n == 0)
return Ack(m— 1, 1);
else

return Ack(m — 1, Ack(m, n — 1));
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int Ack(int m, int n) {
if (m== 0)
return n + 1;
else if (n == 0)
return Ack(m - 1, 1);
else
return Ack(m — 1, Ack(m, n — 1));
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A Login Protocol

login_name pw_correct
START X=0 VALIDATE <607
1 f restart

X=607?

x>107?| restart x<607? | pw_wrong
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Timed Automata

Introduced by Rajeev Alur at Stanford during his PhD under
David Dill:

» Rajeev Alur, David L. Dill: Automata For Modeling
Real-Time Systems. ICALP 1990: 322-335

» Rajeev Alur, David L. Dill: A Theory of Timed Automata.
TCS 126(2): 183-235, 1994




Timed Automata

login_name pw_correct
START X=0 VALIDATE <607
1 f restart

X=607?

x>107?| restart x<607? | pw_wrong

Y

/
DELAY |= P2 {1 0G_ERROR
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Timed Automata

Time is modelled as the non-negative reals, R>g.

Theorem (Alur, Courcourbetis, Dill 1990)
Reachability is decidable (in fact PSPACE-complete).

Unfortunately:

Theorem (Alur & Dill 1990)
Language inclusion is undecidable for timed automata.
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Temporal Logic Model Checking

“The paradigmatic idea of
the automata-theoretic
approach to verification is
that we can compile
high-level logical
specifications into an
equivalent low-level
finite-state formalism.”

Moshe Vardi

Theorem
Automata are closed under all Boolean operations. Moreover,

the language inclusion problem [ L(A) C L(B) ?] is decidable.
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An Uncomplementable Timed Automaton
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A cannot be complemented:
There is no timed automaton B with L(B) = L(A).
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Metric Temporal Logic

0O(a — 9,11 b)
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Does the timed word satisfy the specification? Yes.
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Real-Time Model Checking

Given a timed automaton A and a Metric Temporal Logic
specification ¢, does every timed word of A satisfy ¢?

» For about 15 years (~ 1990-2005), the real-time
model-checking problem was widely claimed in the
literature to be undecidable.

» In 2005, James Worrell and | showed decidability through
the development of the theory of timed alternating
automata.
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Real-Time Model Checking:
A High-Level Algorithm
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Real-Time Model Checking:
A High-Level Algorithm

Real-time model checking problem I

4

Alternating timed automaton emptiness problem I

4

Halting problem for Turing machine with insertion errors.
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Real-Time Model Checking

Theorem

The real-time model-checking problem for Metric Temporal
Logic is decidable (under the pointwise semantics).

The complexity is provably non-primitive recursive. In particular,
it grows faster than Ackermann’s function in the worst case.



From Timed Alternating Automata to
Efficient Runtime Monitoring Algorithms
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Quantitative Verification:
From Model Checking to Model Measuring
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