
Timing Is Everything

Joël Ouaknine

Department of Computer Science
Oxford University

BCS Meeting, Oxford

17 May 2012

Automated Verification

theory practice

“In theory, there is no difference between theory and
practice. In practice, there is.”

Jan L.A. van de Snepscheut

Ariane 5 Explosion, French Guyana, 1996

NASA Mars Missions, 1997–2004

• 1997: Mars Rover loses contact
• 1999: Mars Climate Orbiter is lost
• 1999: Mars Polar Lander is lost
• 2004: Mars Rover freezes

Intel Pentium FDIV Bug, 1994

Northeast Blackout, 2003

Chrysler Pacifica SUV, 2006

December 2006: DaimlerChrysler recalls 128,000 Pacifica
sports utility vehicles because of a problem with the software
governing the fuel pump and power train control. The defect
could cause the engine to stall unexpectedly. [Washington Post]

Automated Verification

“A Grand Challenge for computing research.”

Sir Tony Hoare, 2003

Now one of a small handful of areas ‘targetted for growth’ by
UK funding council EPSRC.

Automated Verification

“A Grand Challenge for computing research.”

Sir Tony Hoare, 2003

Now one of a small handful of areas ‘targetted for growth’ by
UK funding council EPSRC.

Automated Verification

“Nobody is going to run into a friend’s office with a
program verification. Nobody is going to sketch a
verification out on a paper napkin. . . One can feel
one’s eyes glaze over at the very thought.”

Rich de Millo, Richard Lipton, Alan Perlis, 1979

“The success of program verification as a generally
applicable and completely reliable method for
guaranteeing program performance is not even a
theoretical possibility.”

James H. Fetzer
Program Verification: The Very Idea, CACM 31(9), 1988

Automated Verification

“Nobody is going to run into a friend’s office with a
program verification. Nobody is going to sketch a
verification out on a paper napkin. . . One can feel
one’s eyes glaze over at the very thought.”

Rich de Millo, Richard Lipton, Alan Perlis, 1979

“The success of program verification as a generally
applicable and completely reliable method for
guaranteeing program performance is not even a
theoretical possibility.”

James H. Fetzer
Program Verification: The Very Idea, CACM 31(9), 1988

Automated Verification: A High-Level Overview

G(a ==> Fb)

G(!c && d)

. . .

Modelling Specification

2.

Properties:

1.

Verification

system ok

bug found

parameter values

performance indices

TERMINATOR vs. The Ackermann Function

i n t Ack (i n t m, i n t n) {
i f (m == 0)

return n + 1;
else i f (n == 0)

return Ack (m − 1 , 1) ;
else

return Ack (m − 1 , Ack (m, n − 1)) ;
}

Ack(n, n) : 1, 3, 7, 61, 2222222

− 3, 222··
·2︸ ︷︷ ︸

Ack(5,4)+3

− 3

TERMINATOR vs. The Ackermann Function

i n t Ack (i n t m, i n t n) {
i f (m == 0)

return n + 1;
else i f (n == 0)

return Ack (m − 1 , 1) ;
else

return Ack (m − 1 , Ack (m, n − 1)) ;
}

Ack(n, n) : 1, 3, 7, 61, 2222222

− 3, 222··
·2︸ ︷︷ ︸

Ack(5,4)+3

− 3

Timing Is Everything

A Login Protocol

pw_wrong

login_name

restart

restart

log_pw_wrong

pw_correct
START VALIDATE

LOG_ERRORDELAY

connectedx x

x 60?

x

x

<60?:=0

≥

:=0

<60?x ≥10?

A Login Protocol

pw_wrong

login_name

restart

restart

log_pw_wrong

pw_correct
START VALIDATE

LOG_ERRORDELAY

connectedx x

x 60?

x

x

<60?:=0

≥

:=0

<60?x ≥10?

A Login Protocol

pw_wrong

login_name

restart

restart

log_pw_wrong

pw_correct
START VALIDATE

LOG_ERRORDELAY

connectedx x

x 60?

x

x

<60?:=0

≥

:=0

<60?x ≥10?

A Login Protocol

pw_wrong

login_name

restart

restart

log_pw_wrong

pw_correct
START VALIDATE

LOG_ERRORDELAY

connectedx x

x 60?

x

x

<60?:=0

≥

:=0

<60?x ≥10?

A Login Protocol

pw_wrong

login_name

restart

restart

log_pw_wrong

pw_correct
START VALIDATE

LOG_ERRORDELAY

connectedx x

x 60?

x

x

<60?:=0

≥

:=0

<60?x ≥10?

A Login Protocol

pw_wrong

login_name

restart

restart

log_pw_wrong

pw_correct
START VALIDATE

LOG_ERRORDELAY

connectedx x

x 60?

x

x

<60?:=0

≥

:=0

<60?x ≥10?

A Login Protocol

x ≥10? pw_wrong

login_name

restart

restart

log_pw_wrong

pw_correct
START VALIDATE

LOG_ERRORDELAY

connectedx x

x 60?

x

x

<60?:=0

≥

:=0

<60?

BMW Hydrogen 7

�(PEDAL→ ♦ BRAKE)

�(PEDAL→ ♦[25,40] BRAKE)

BMW Hydrogen 7

�(PEDAL→ ♦ BRAKE)

�(PEDAL→ ♦[25,40] BRAKE)

BMW Hydrogen 7

�(PEDAL→ ♦ BRAKE)

�(PEDAL→ ♦[25,40] BRAKE)

BMW Hydrogen 7

�(PEDAL→ ♦ BRAKE)

�(PEDAL→ ♦[25,40] BRAKE)

Timed Automata

Introduced by Rajeev Alur at Stanford during his PhD under
David Dill:

I Rajeev Alur, David L. Dill: Automata For Modeling
Real-Time Systems. ICALP 1990: 322-335

I Rajeev Alur, David L. Dill: A Theory of Timed Automata.
TCS 126(2): 183-235, 1994

Timed Automata

x ≥10? pw_wrong

login_name

restart

restart

log_pw_wrong

pw_correct
START VALIDATE

LOG_ERRORDELAY

connectedx x

x 60?

x

x

<60?:=0

≥

:=0

<60?

Timed Automata

Time is modelled as the non-negative reals, R≥0.

Theorem (Alur, Courcourbetis, Dill 1990)
Reachability is decidable (in fact PSPACE-complete).

Unfortunately:

Theorem (Alur & Dill 1990)
Language inclusion is undecidable for timed automata.

Timed Automata

Time is modelled as the non-negative reals, R≥0.

Theorem (Alur, Courcourbetis, Dill 1990)
Reachability is decidable (in fact PSPACE-complete).

Unfortunately:

Theorem (Alur & Dill 1990)
Language inclusion is undecidable for timed automata.

Timed Automata

Time is modelled as the non-negative reals, R≥0.

Theorem (Alur, Courcourbetis, Dill 1990)
Reachability is decidable (in fact PSPACE-complete).

Unfortunately:

Theorem (Alur & Dill 1990)
Language inclusion is undecidable for timed automata.

Temporal Logic Model Checking

“The paradigmatic idea of
the automata-theoretic
approach to verification is
that we can compile
high-level logical
specifications into an
equivalent low-level
finite-state formalism.”

Moshe Vardi

Theorem
Automata are closed under all Boolean operations. Moreover,
the language inclusion problem [L(A) ⊆ L(B) ?] is decidable.

Temporal Logic Model Checking

“The paradigmatic idea of
the automata-theoretic
approach to verification is
that we can compile
high-level logical
specifications into an
equivalent low-level
finite-state formalism.”

Moshe Vardi
Theorem
Automata are closed under all Boolean operations. Moreover,
the language inclusion problem [L(A) ⊆ L(B) ?] is decidable.

An Uncomplementable Timed Automaton

A : //ONMLHIJK
@GF ECD

a

��
a

x :=0
//ONMLHIJK a

x=1?
//

@GF ECD
a

�� ONMLHIJKGFED@ABC
@GF ECD

a

��

1

L(A):

1

1

L(A):

A cannot be complemented:
There is no timed automaton B with L(B) = L(A).

An Uncomplementable Timed Automaton

A : //ONMLHIJK
@GF ECD

a

��
a

x :=0
//ONMLHIJK a

x=1?
//

@GF ECD
a

�� ONMLHIJKGFED@ABC
@GF ECD

a

��

L(A):
1

1

L(A):

1

1

L(A):

A cannot be complemented:
There is no timed automaton B with L(B) = L(A).

An Uncomplementable Timed Automaton

A : //ONMLHIJK
@GF ECD

a

��
a

x :=0
//ONMLHIJK a

x=1?
//

@GF ECD
a

�� ONMLHIJKGFED@ABC
@GF ECD

a

��

1

L(A):

1

1

L(A):

A cannot be complemented:
There is no timed automaton B with L(B) = L(A).

An Uncomplementable Timed Automaton

A : //ONMLHIJK
@GF ECD

a

��
a

x :=0
//ONMLHIJK a

x=1?
//

@GF ECD
a

�� ONMLHIJKGFED@ABC
@GF ECD

a

��

1

L(A):

1

1

L(A):

A cannot be complemented:
There is no timed automaton B with L(B) = L(A).

An Uncomplementable Timed Automaton

A : //ONMLHIJK
@GF ECD

a

��
a

x :=0
//ONMLHIJK a

x=1?
//

@GF ECD
a

�� ONMLHIJKGFED@ABC
@GF ECD

a

��

1

L(A):

1

1

L(A):

A cannot be complemented:
There is no timed automaton B with L(B) = L(A).

Metric Temporal Logic

�(a→ ♦[0,1] b)

0 1 2 3

1

Does the timed word satisfy the specification? Yes.

Metric Temporal Logic

�(a→ ♦[0,1] b)

0 1 2 3

1

Does the timed word satisfy the specification? Yes.

Metric Temporal Logic

�(a→ ♦[0,1] b)

0 1 2 3

1

Does the timed word satisfy the specification?

Metric Temporal Logic

�(a→ ♦[0,1] b)

0 1 2 3

1

Does the timed word satisfy the specification?

Metric Temporal Logic

�(a→ ♦[0,1] b)

1

0 1 2 3

Does the timed word satisfy the specification?

Metric Temporal Logic

�(a→ ♦[0,1] b)

1

0 1 2 3

Does the timed word satisfy the specification?

Metric Temporal Logic

�(a→ ♦[0,1] b)

1

0 1 2 3

Does the timed word satisfy the specification?

Metric Temporal Logic

�(a→ ♦[0,1] b)

1

0 1 2 3

Does the timed word satisfy the specification?

Metric Temporal Logic

�(a→ ♦[0,1] b)

1

0 1 2 3

Does the timed word satisfy the specification?

Metric Temporal Logic

�(a→ ♦[0,1] b)

1

0 1 2 3

Does the timed word satisfy the specification?

Metric Temporal Logic

�(a→ ♦[0,1] b)

1

0 1 2 3

Does the timed word satisfy the specification?

Metric Temporal Logic

�(a→ ♦[0,1] b)

0 1 2 3

1

Does the timed word satisfy the specification? Yes.

Real-Time Model Checking

Given a timed automaton A and a Metric Temporal Logic
specification ϕ, does every timed word of A satisfy ϕ?

I For about 15 years (∼ 1990–2005), the real-time
model-checking problem was widely claimed in the
literature to be undecidable.

I In 2005, James Worrell and I showed decidability through
the development of the theory of timed alternating
automata.

Real-Time Model Checking

Given a timed automaton A and a Metric Temporal Logic
specification ϕ, does every timed word of A satisfy ϕ?

I For about 15 years (∼ 1990–2005), the real-time
model-checking problem was widely claimed in the
literature to be undecidable.

I In 2005, James Worrell and I showed decidability through
the development of the theory of timed alternating
automata.

Real-Time Model Checking

Given a timed automaton A and a Metric Temporal Logic
specification ϕ, does every timed word of A satisfy ϕ?

I For about 15 years (∼ 1990–2005), the real-time
model-checking problem was widely claimed in the
literature to be undecidable.

I In 2005, James Worrell and I showed decidability through
the development of the theory of timed alternating
automata.

�(a→ ♦=1 b)

a a

bb

{a, b}

0

=1?x

0

b

11

�(a→ ♦=1 b)

=1?xs
1

<1?x

<1?x {a, b}

0
s

2
s

a

a

:=0x

b

bb

a

0

b

11

�(a→ ♦=1 b)

=1?xs
1

<1?x

<1?x {a, b}

0
s

2
s

a

a

:=0x

b

bb

a

0 1 2

a b a b b b

0.5 0.8 1.31.4 1.80.3

11

�(a→ ♦=1 b)

=1?xs
1

<1?x

<1?x {a, b}

0
s

2
s

a

a

:=0x

b

bb

a

0 1 2

a b a b b b

0.5 0.8 1.31.4 1.80.3

11

�(a→ ♦=1 b)

=1?xs
1

<1?x

<1?x {a, b}

0
s

2
s

a

a

:=0x

b

bb

a

0 1 2

a b a b b b

0.5 0.8 1.31.4 1.80.3

1 1

�(a→ ♦=1 b)

=1?xs
1

<1?x

<1?x {a, b}

0
s

2
s

a

a

:=0x

b

bb

a

0 1 2

a b a b b b

0.5 0.8 1.31.4 1.80.3

11

s0

s1,)0.6(

s2,(1.1)

0.1,b

,(1.4)s0

s1,)0.5(

s2,)(1.0

0.5,b

,(1.3)s0,(0.8)

s1,0()

s1,)(0.5

0.3,a

s0

s1,()0.2

0.2,b

,(0.5)s0,()0.3

s1,0()

0.3,a

s2,()1.5

s0

s2,)(1.0s
0
,0()s
0
,0()

(1.8)

b0.4,

,

�(a→ ♦=1 b)

=1?xs
1

<1?x

<1?x {a, b}

0
s

2
s

a

a

:=0x

b

bb

a

0 1 2

a b a b b b

0.5 0.8 1.31.4 1.80.3

11

s0

s1,)0.6(

s2,(1.1)

0.1,b

,(1.4)s0

s1,)0.5(

s2,)(1.0

0.5,b

,(1.3)s0,(0.8)

s1,0()

s1,)(0.5

0.3,a

s0

s1,()0.2

0.2,b

,(0.5)

s2,()1.5

s0

s2,)(1.0
s
0
,()0.3

s
1
,0()

s
0
,0()s
0
,0()

0.3,a
(1.8)

b0.4,

,

�(a→ ♦=1 b)

=1?xs
1

<1?x

<1?x {a, b}

0
s

2
s

a

a

:=0x

b

bb

a

0 1 2

a b a b b b

0.5 0.8 1.31.4 1.80.3

11

s0

s1,)0.6(

s2,(1.1)

0.1,b

,(1.4)s0

s1,)0.5(

s2,)(1.0

0.5,b

,(1.3)s0,(0.8)

s1,0()

s1,)(0.5

0.3,a

s2,()1.5

s0

s2,)(1.0
s
0

s
1
,()0.2

s
0
,()0.3

s
1
,0()

s
0
,0()s
0
,0()

0.3, 0.2,ba
(1.8)

b0.4,

,(0.5)
,

�(a→ ♦=1 b)

=1?xs
1

<1?x

<1?x {a, b}

0
s

2
s

a

a

:=0x

b

bb

a

0 1 2

a b a b b b

0.5 0.8 1.31.4 1.80.3

11

s0

s1,)0.6(

s2,(1.1)

0.1,b

,(1.4)s0

s1,)0.5(

s2,)(1.0

0.5,b

,(1.3)s
0
,(0.8)

s
1
,0()

s
1
,)(0.5 s2,()1.5

s0

s2,)(1.0
s
0

s
1
,()0.2

s
0
,()0.3

s
1
,0()

s
0
,0()s
0
,0()

0.3, 0.2,b 0.3,aa
(1.8)

b0.4,

,(0.5)
,

�(a→ ♦=1 b)

=1?xs
1

<1?x

<1?x {a, b}

0
s

2
s

a

a

:=0x

b

bb

a

0 1 2

a b a b b b

0.5 0.8 1.31.4 1.80.3

11

s0

s1,)0.6(

s2,(1.1)

0.1,b

,(1.4)s
0
,(0.8) s

0

s
1
,0()

s
1
,)(0.5

s
1
,)0.5(

s
2
,)(1.0 s2,()1.5

s0

s2,)(1.0
s
0

s
1
,()0.2

s
0
,()0.3

s
1
,0()

s
0
,0()s
0
,0()

0.3, 0.2,b 0.3,a
0.5,b

a ,(1.3) (1.8)

b0.4,

,(0.5)
,

�(a→ ♦=1 b)

=1?xs
1

<1?x

<1?x {a, b}

0
s

2
s

a

a

:=0x

b

bb

a

0 1 2

a b a b b b

0.5 0.8 1.31.4 1.80.3

11

s
0
,(0.8) s

0
s
0

s
1
,0()

s
1
,)(0.5

s
1
,)0.5(s

1
,)0.6(

s
2
,)(1.0 s

2
,(1.1) s2,()1.5

s0

s2,)(1.0
s
0

s
1
,()0.2

s
0
,()0.3

s
1
,0()

s
0
,0()s
0
,0()

0.3, 0.2,b 0.3,a
0.5,b 0.1,b

a ,(1.3) ,(1.4) (1.8)

b0.4,

,(0.5)
,

�(a→ ♦=1 b)

=1?xs
1

<1?x

<1?x {a, b}

0
s

2
s

a

a

:=0x

b

bb

a

0 1 2

a b a b b b

0.5 0.8 1.31.4 1.80.3

11

s
0
,0()s
0
,0()

s
0
,()0.3

s
1
,0()

s
0

s
1
,()0.2

,(0.5)
s
0
,(0.8) s

0
s
0

s
0

s
1
,0()

s
1
,)(0.5

s
1
,)0.5(s

1
,)0.6(

s
2
,)(1.0 s

2
,(1.1)

s
2
,)(1.0

s
2
,()1.5

0.3, 0.2,b 0.3,a
0.5,b 0.1,b 0.4,b

a ,(1.3) ,(1.4) ,(1.8)

Real-Time Model Checking:
A High-Level Algorithm

Real-time model checking problem

⇓

Alternating timed automaton emptiness problem

⇓

Halting problem for Turing machine with insertion errors

Real-Time Model Checking:
A High-Level Algorithm

Real-time model checking problem

⇓

Alternating timed automaton emptiness problem

⇓

Halting problem for Turing machine with insertion errors

Real-Time Model Checking:
A High-Level Algorithm

Real-time model checking problem

⇓

Alternating timed automaton emptiness problem

⇓

Halting problem for Turing machine with insertion errors

Higman’s Lemma

Theorem
The subword order over a finite alphabet is a well-quasi order.

(Graham Higman, Ordering by Divisibility in Abstract Algebras,
Proceedings of the London Mathematical Society, vol. 2, 1952.)

“HIGMAN” is a subword of “HIGHMOUNTblackAIblackN”.

Any infinite sequence of words W1, W2, W3, . . . must eventually
have two words, Wi and Wi+k , such that the first is a subword
of the second.

aba, abbb, baab, aa, ba, bbb, abb, ab, a, bb, b

Higman’s Lemma

Theorem
The subword order over a finite alphabet is a well-quasi order.

(Graham Higman, Ordering by Divisibility in Abstract Algebras,
Proceedings of the London Mathematical Society, vol. 2, 1952.)

“HIGMAN” is a subword of “HIGHMOUNTAIN”.

Any infinite sequence of words W1, W2, W3, . . . must eventually
have two words, Wi and Wi+k , such that the first is a subword
of the second.

aba, abbb, baab, aa, ba, bbb, abb, ab, a, bb, b

Higman’s Lemma

Theorem
The subword order over a finite alphabet is a well-quasi order.

(Graham Higman, Ordering by Divisibility in Abstract Algebras,
Proceedings of the London Mathematical Society, vol. 2, 1952.)

“HIGMAN” is a subword of “HIGHMOUNTAIN”.

Any infinite sequence of words W1, W2, W3, . . . must eventually
have two words, Wi and Wi+k , such that the first is a subword
of the second.

aba, abbb, baab, aa, ba, bbb, abb, ab, a, bb, b

Higman’s Lemma

Theorem
The subword order over a finite alphabet is a well-quasi order.

(Graham Higman, Ordering by Divisibility in Abstract Algebras,
Proceedings of the London Mathematical Society, vol. 2, 1952.)

“HIGMAN” is a subword of “HIGHMOUNTAIN”.

Any infinite sequence of words W1, W2, W3, . . . must eventually
have two words, Wi and Wi+k , such that the first is a subword
of the second.

I aba, abbb, baab, aa, ba, bbb, abb, ab, a, bb, b

Higman’s Lemma

Theorem
The subword order over a finite alphabet is a well-quasi order.

(Graham Higman, Ordering by Divisibility in Abstract Algebras,
Proceedings of the London Mathematical Society, vol. 2, 1952.)

“HIGMAN” is a subword of “HIGHMOUNTAIN”.

Any infinite sequence of words W1, W2, W3, . . . must eventually
have two words, Wi and Wi+k , such that the first is a subword
of the second.

I aba

, abbb, baab, aa, ba, bbb, abb, ab, a, bb, b

Higman’s Lemma

Theorem
The subword order over a finite alphabet is a well-quasi order.

(Graham Higman, Ordering by Divisibility in Abstract Algebras,
Proceedings of the London Mathematical Society, vol. 2, 1952.)

“HIGMAN” is a subword of “HIGHMOUNTAIN”.

Any infinite sequence of words W1, W2, W3, . . . must eventually
have two words, Wi and Wi+k , such that the first is a subword
of the second.

I aba, abbb

, baab, aa, ba, bbb, abb, ab, a, bb, b

Higman’s Lemma

Theorem
The subword order over a finite alphabet is a well-quasi order.

(Graham Higman, Ordering by Divisibility in Abstract Algebras,
Proceedings of the London Mathematical Society, vol. 2, 1952.)

“HIGMAN” is a subword of “HIGHMOUNTAIN”.

Any infinite sequence of words W1, W2, W3, . . . must eventually
have two words, Wi and Wi+k , such that the first is a subword
of the second.

I aba, abbb, baab

, aa, ba, bbb, abb, ab, a, bb, b

Higman’s Lemma

Theorem
The subword order over a finite alphabet is a well-quasi order.

(Graham Higman, Ordering by Divisibility in Abstract Algebras,
Proceedings of the London Mathematical Society, vol. 2, 1952.)

“HIGMAN” is a subword of “HIGHMOUNTAIN”.

Any infinite sequence of words W1, W2, W3, . . . must eventually
have two words, Wi and Wi+k , such that the first is a subword
of the second.

I aba, abbb, baab, aa

, ba, bbb, abb, ab, a, bb, b

Higman’s Lemma

Theorem
The subword order over a finite alphabet is a well-quasi order.

(Graham Higman, Ordering by Divisibility in Abstract Algebras,
Proceedings of the London Mathematical Society, vol. 2, 1952.)

“HIGMAN” is a subword of “HIGHMOUNTAIN”.

Any infinite sequence of words W1, W2, W3, . . . must eventually
have two words, Wi and Wi+k , such that the first is a subword
of the second.

I aba, abbb, baab, aa, ba

, bbb, abb, ab, a, bb, b

Higman’s Lemma

Theorem
The subword order over a finite alphabet is a well-quasi order.

(Graham Higman, Ordering by Divisibility in Abstract Algebras,
Proceedings of the London Mathematical Society, vol. 2, 1952.)

“HIGMAN” is a subword of “HIGHMOUNTAIN”.

Any infinite sequence of words W1, W2, W3, . . . must eventually
have two words, Wi and Wi+k , such that the first is a subword
of the second.

I aba, abbb, baab, aa, ba, bbb

, abb, ab, a, bb, b

Higman’s Lemma

Theorem
The subword order over a finite alphabet is a well-quasi order.

(Graham Higman, Ordering by Divisibility in Abstract Algebras,
Proceedings of the London Mathematical Society, vol. 2, 1952.)

“HIGMAN” is a subword of “HIGHMOUNTAIN”.

Any infinite sequence of words W1, W2, W3, . . . must eventually
have two words, Wi and Wi+k , such that the first is a subword
of the second.

I aba, abbb, baab, aa, ba, bbb, abb

, ab, a, bb, b

Higman’s Lemma

Theorem
The subword order over a finite alphabet is a well-quasi order.

(Graham Higman, Ordering by Divisibility in Abstract Algebras,
Proceedings of the London Mathematical Society, vol. 2, 1952.)

“HIGMAN” is a subword of “HIGHMOUNTAIN”.

Any infinite sequence of words W1, W2, W3, . . . must eventually
have two words, Wi and Wi+k , such that the first is a subword
of the second.

I aba, abbb, baab, aa, ba, bbb, abb, ab

, a, bb, b

Higman’s Lemma

Theorem
The subword order over a finite alphabet is a well-quasi order.

(Graham Higman, Ordering by Divisibility in Abstract Algebras,
Proceedings of the London Mathematical Society, vol. 2, 1952.)

“HIGMAN” is a subword of “HIGHMOUNTAIN”.

Any infinite sequence of words W1, W2, W3, . . . must eventually
have two words, Wi and Wi+k , such that the first is a subword
of the second.

I aba, abbb, baab, aa, ba, bbb, abb, ab, a

, bb, b

Higman’s Lemma

Theorem
The subword order over a finite alphabet is a well-quasi order.

(Graham Higman, Ordering by Divisibility in Abstract Algebras,
Proceedings of the London Mathematical Society, vol. 2, 1952.)

“HIGMAN” is a subword of “HIGHMOUNTAIN”.

Any infinite sequence of words W1, W2, W3, . . . must eventually
have two words, Wi and Wi+k , such that the first is a subword
of the second.

I aba, abbb, baab, aa, ba, bbb, abb, ab, a, bb

, b

Higman’s Lemma

Theorem
The subword order over a finite alphabet is a well-quasi order.

(Graham Higman, Ordering by Divisibility in Abstract Algebras,
Proceedings of the London Mathematical Society, vol. 2, 1952.)

“HIGMAN” is a subword of “HIGHMOUNTAIN”.

Any infinite sequence of words W1, W2, W3, . . . must eventually
have two words, Wi and Wi+k , such that the first is a subword
of the second.

I aba, abbb, baab, aa, ba, bbb, abb, ab, a, bb, b

The Halting Problem for Faulty Turing Machines

, W’)

q0 , <>)(

halt

halt

q(is a subword of

...
(q, W)

The Halting Problem for Faulty Turing Machines

, W’)

q0 , <>)(

halt

halt

q(is a subword of

...
(q, W)

The Halting Problem for Faulty Turing Machines

, W’)

q0 , <>)(

halt

halt

q(is a subword of

...
(q, W)

The Halting Problem for Faulty Turing Machines

, W’)

q0 , <>)(

halt

halt

q(is a subword of

...
(q, W)

The Halting Problem for Faulty Turing Machines

, W’)

q0 , <>)(

halt

halt

q(

...
(, W)q

is a subword of

The Halting Problem for Faulty Turing Machines

q0 , <>)(

halt

halt
...

, W’)

(, W)q

is a subword ofq(

The Halting Problem for Faulty Turing Machines

q0 , <>)(

halt

halt
...

q(, W’)

(, W)q

is a subword of

The Halting Problem for Faulty Turing Machines

q0 , <>)(

halt

halt

...

q(, W’)

(, W)q

is a subword of

The Halting Problem for Faulty Turing Machines

q0 , <>)(

halt

halt

...

q(, W’)

(, W)q

is a subword of

The Halting Problem for Faulty Turing Machines

q0 , <>)(

halt

halt
...

q(, W’)

(, W)q

is a subword of

Real-Time Model Checking

Theorem
The real-time model-checking problem for Metric Temporal
Logic is decidable (under the pointwise semantics).

The complexity is provably non-primitive recursive. In particular,
it grows faster than Ackermann’s function in the worst case.

Real-Time Model Checking

Theorem
The real-time model-checking problem for Metric Temporal
Logic is decidable (under the pointwise semantics).

The complexity is provably non-primitive recursive. In particular,
it grows faster than Ackermann’s function in the worst case.

From Timed Alternating Automata to
Efficient Runtime Monitoring Algorithms

�(PEDAL→ ♦[25,40] BRAKE)

Quantitative Verification:
From Model Checking to Model Measuring

quantitative
systems

qualitative
systems

ru
nti

me

mon
ito

rin
g

mod
el

mea
su

rin
g

pa
ra

metr
ic

sy
nth

es
is

mod
ule

ch
ec

kin
g

mod
el

ch
ec

kin
g

Quantitative Verification:
From Model Checking to Model Measuring

quantitative
systems

qualitative
systems

ru
nti

me

mon
ito

rin
g

mod
el

mea
su

rin
g

pa
ra

metr
ic

sy
nth

es
is

mod
ule

ch
ec

kin
g

mod
el

ch
ec

kin
g

Quantitative Verification:
From Model Checking to Model Measuring

quantitative
systems

qualitative
systems

ru
nti

me

mon
ito

rin
g

mod
el

mea
su

rin
g

pa
ra

metr
ic

sy
nth

es
is

mod
ule

ch
ec

kin
g

mod
el

ch
ec

kin
g

Quantitative Verification:
From Model Checking to Model Measuring

quantitative
systems

qualitative
systems

ru
nti

me

mon
ito

rin
g

mod
el

mea
su

rin
g

pa
ra

metr
ic

sy
nth

es
is

mod
ule

ch
ec

kin
g

mod
el

ch
ec

kin
g

